

Dialogue Development and Implementation in the
Danish Dialogue Project

Hans Dybkjær, Niels Ole Bernsen and Laila Dybkjær
Centre for Cognitive Science, Roskilde University

PO Box 260, DK-4000 Roskilde, Denmark

Abstract

This chapter presents results on dialogue development and implementation of
the first prototype P1 in the Danish Dialogue project. The project as a whole is
briefly presented in terms of system components and system architecture. The
remainder of the chapter focuses on dialogue. Firstly, it is described how a
dialogue model for the first prototype P1 was developed using Wizard of Oz
(WOZ) experiments. The WOZ method is described and results from the WOZ
experiments presented. Secondly, a description of the implementation of the
dialogue model is provided. The conclusion presents a number of open
questions to be answered during the test of the prototype.

1. Introduction

The Dialogue project is a Danish national project on spoken language dialogue
systems. The project started in 1991 and is carried out with an effort of 30
man/years by the Center for PersonKommunikation (CPK, earlier the Speech
Technology Centre - STC), Aalborg University, the Centre for Language
Technology (CST), Copenhagen University, and the Centre for Cognitive
Science (CCS), Roskilde University. The aim is to develop two application-
oriented dialogue system prototypes called P1 and P2 in the domain of Danish
domestic airline ticket reservation and flight information accessed through the
telephone. The first prototype, P1, has been built and is currently being tested.
The next step will be to develop P2 as a more advanced version of P1 based on
the test results on P1.

The plan of the chapter is as follows. Section 2 briefly explains the main
system components and the system architecture. Section 3 describes the
dialogue design process including initial design specification, methodology and

dialogue modelling results. Section 4 describes the implementation of the
dialogue model. Section 5 concludes and discusses future work.

2. System Components and System Architecture

To provide the context for dialogue development and implementation an outline
of the P1 prototype system is given in this section. P1 is outlined both in terms
of logical system structure and physical system structure.

2.1 System Components

The logical system structure is presented in figure 1 which shows the main
components of P1.

Speech
Recognition

Linguistic
Analysis

Pre-recorded
Speech

UserDialogue
Handling

Application
Database

Figure 1: The main components of the P1 spoken language dialogue
prototype system.

A user calls the system and provides input to the Speech Recognition module
which processes the speech signal. The speech recogniser is a further developed
version of the recogniser which was developed in the Esprit SUNSTAR project
[13]. It is a speaker-independent continuous speech recogniser based on Hidden
Markov Models (HMMs). In addition to user input, the speech recogniser needs
predictions from the Dialogue Handling module on the sub-grammars to be used
at any given point during the dialogue. The sub-grammars used in the Speech
Recognition module are word pair grammars represented as finite state
transition networks in which the transitions represent HMMs. Viterbi search is
used to find a 1-best path through the network. This path represents a string of
lexical references which constitutes the output of the Speech Recognition
module.

The lexical string is input to the Linguistic Analysis module. The Dialogue
Handling module indicates to the parser which sub-grammars to use and which
semantic objects to fill in on the basis of the input string from the recogniser.
The semantic objects are frame-like structures containing a number of slots for
domain relevant information. The sub-grammars used for linguistic analysis are
unification-based Augmented Phrase Structure Grammars (APSGs)

implemented in a formalism which is a subset of the one used in the Eurotra
project [6]. The Linguistic Analysis module analyses the input based on the
active sub-grammars using a chart data structure and an object-oriented
implementation of the Earley parsing algorithm. The parser uses semantic
mapping rules for assigning semantic interpretations [14] which in turn are used
for filling in the active semantic objects.

The Dialogue Handling module interprets the contents of the semantic objects
received from the Linguistic Analysis module and decides on the next action to
take which may be to send a query to the Database or send relevant output to
the user. In the latter case, the Dialogue Handling module also sends predictions
to the speech recogniser and the parser on the next sub-grammars to use, i.e. on
which input now to expect from the user. The Dialogue Handling module, in
particular the dialogue description, is discussed in detail in section 4 below.

The output module is based on Pre-recorded Speech. A number of words and
(parts of) sentences have been recorded in advance and are selected, put together
and replayed according to instructions from the Dialogue Handling module.

2.2 System Architecture

The system architecture of P1 [11] is based on the SUNSTAR DDL/ICM
architecture [5] developed in the Esprit SUNSTAR project. Figure 2 presents
the physical architecture of P1. The Dialogue Communication Manager is a bus
carrying messages between the other components. These may be other programs
or hardware and communicate with the bus through drivers.

DatabaseSpeech
Recogniser

Reproductive
Speech

Interpretation
and Control
Module (ICM)

Parser

Dialogue
Communi-
cation
Manager

DDL-Tool

Dialogue
Description

dr
iv

er

dr
iv

er

Keyboard
Screen
Mouse dr

iv
er

dr
iv

er dr
iv

er

Figure 2: Overall system architecture of P1.

The core module is the Interpretation and Control Module (ICM). ICM
interprets a Dialogue Description which is a program written in DDL (Dialogue
Description Language). DDL is an experimental language originally intended
for primitive dialogues not involving natural language. DDL has been extended
in the Dialogue Project to meet the particular needs of the P1 system. DDL has
three layers: a graphical layer which specifies how the dialogue will be
controlled in terms of event-driven recursive flow charts; a frame layer which
declares data structures; and a textual layer which declares data structures and
specifies actions. The DDL Dialogue Description has been created by using the
DDL-Tool which is a graphical editor and debugger. The Dialogue Description
and the ICM jointly form the Dialogue Handling module. The Parser has been
implemented as a module external to the ICM.

When input from the Speech Recogniser is expected by the Dialogue
Description, the ICM looks if there is a message. The message is passed through
the Parser before the ICM continues its interpretation of the Dialogue
Description. Queries to and answers from the Database are also exchanged as
messages. Output information is sent as a message to the Reproductive Speech
module and predictions are sent as messages from the ICM to the Speech
Recogniser.

The Keyboard, Screen, and Mouse modules are not part of the running P1
system but support testing of the system. For instance, the speech recogniser
may be simulated via keyboard input. The presence of the Keyboard, Screen and
Mouse modules also enables later extension of the system into a multimodal
system.

The P1 system’s Speech Recogniser runs partly on a Digital Signal Processor
(DSP) board and partly on a PC whereas the rest of the system runs on a
Sun/Sparc station.

3. Dialogue Model Development

The goal of dialogue model development in the case of the spoken language
dialogue system P1 was to enable the machine to conduct a dialogue with users
which allowed them to solve their tasks in a way which was as natural as
possible given the heavy technological and other constraints on the design
process, many of which were imposed by the speech recogniser. This section
describes, firstly, the initial design phase where knowledge is elicited for a first
dialogue model and other design decisions are made which influence the rest of
the design process. Secondly, the Wizard of Oz (WOZ) prototyping method
used for iterative dialogue model design is described followed by a review of
the main results obtained in attempting to meet the design process constraints.

3.1 The Initial Design Phase

A number of different information sources contributed to the design of the first
dialogue model for P1. The research literature provided an update on the state of
the art in spoken dialogue systems [12]. Field interviews provided information
on the tasks done by human travel agents and how to define the domain of P1.
Details on departures, fares, travel conditions, etc. were obtained from standard
timetables. Due to practical difficulties, recordings of human-human dialogues
in the selected domain of application were made too late to be used in defining
the first dialogue model. The main issue which was identified was a set of
conflicting constraints which had to be traded off against one another in order to
build a usable and technologically feasible system.

On the system side, the dialogue model for P1 had to satisfy the following
technological constraints which were mainly imposed by the speech recogniser:

• an average user utterance length of 3-4 words;
• a maximum user utterance length of 10 words;
• at most 100 words can be active in memory at a time for real time

performance to be possible. Real time performance has high priority in
usable systems in the chosen domain of application;

• project resources limit the vocabulary to about 500 words.
On the user side, the aim is to allow use of natural forms of dialogue and
language. This will contribute to making the system easy to use by both novices
and experts but obviously conflicts with the technological constraints just
mentioned. Naturalness therefore has to be traded for system feasibility as
naturalness is the only aspect of usability which reasonably may be thus traded.
Other aspects of usability must be satisfied for the system to be at all usable.
Basic system usability requires close-to-real-time performance, sufficient
domain and task coverage, sufficiency of task-related vocabulary, natural
grammar, robust handling of error, and that limitations on the naturalness of
dialogue and language be principled and practicable by users [1]. So the trade-
off process is further limited by these basic usability constraints.

No current theory is able to resolve this conflict. The best approach is to use
an experimental and iterative design technique, such as WOZ.

3.2 The Wizard of Oz Method

WOZ [10] is a powerful empirical technique which is well suited to the iterative
development and evaluation of intelligent interactive systems whether these be
uni-modal, as in the current case where speech is being used for both input and
output, or multi-modal. WOZ makes possible the testing of design ideas and the
acquisition of detailed knowledge of the system, its users and user/system
interaction prior to system implementation. Design goals and constraints may be
simulated and adjusted until an acceptable trade-off has eventually been found.

WOZ involves one or more ‘wizards’, i.e. humans who simulate the
performance of non-implemented or partially implemented computer systems in
front of users who are preferably ignorant of the fact that they are interacting
with a simulated system rather than a real one. Interactions are logged and
recorded in various ways, often transcribed and indexed, and analysed for a
variety of purposes. WOZ differs from other prototyping techniques, firstly in
that it does not rely on reductions of the artifact and/or the task domain into
presumed ‘essential’ or ‘representative’ features whose identification remains
problematic. This means that, ideally, the end result of the WOZ specify-and-
simulate test cycle will be a simulated system which can be implemented more
or less directly on the assumption that the cycle has helped the designers to
identify nearly all potential problems with the future system. Secondly, the
presence of a human wizard allows simulation of a broad class of cognitively
demanding tasks which humans are naturally good at, such as natural language
understanding and generation, gesture recognition or visual scene
understanding.

In developing a dialogue model for P1 seven generations of WOZ experiments
were performed [9]. The simulation set-up is shown in figure 3.

The graph structure used by the wizard describes the dialogue structure
including who has the initiative while the predefined phrases show the language
to be used by the system. The graph structure and the phrases jointly constitute
the dialogue model and are the crucial variables involved in finding an
appropriate trade-off between technological constraints and naturalness. A
timetable and a calendar acted as database.

subject

wizard

tape
recorder

equalizer +
harmonizer

telephone

telephone

scenarios

graph structure
with predefined
phrases

timetable

notes
scenarios

assistant

calendar

Figure 3: The set-up of the WOZ experiments.

In the later generations an assistant helped offload the wizard. The assistant
operated the tape recorder, took notes on the information provided by subjects
and gave other practical support.

To induce subjects into believing that they were speaking to a computer, an
equalizer and a harmonizer were used to distort the wizard’s voice during the
last set of experiments [7].

The first five generations served training of the wizard and adjusting major
shortcomings in the dialogue model. Subjects were exclusively system designers
and colleagues. In each of the two last generations 12 subjects were used. The
majority were external subjects and the rest were colleagues. External subjects
were selected so that half of them had a background as secretaries (the expected
end-user group) and the other half were computer scientists. The results
obtained confirm that subjects’ professional backgrounds influence the way they
interact with the system [7]. Each subject received a letter which briefly
introduced the system and informed on the subject’s role. The letter also
contained four scenarios, i.e. domain-relevant tasks which the subject was asked
to perform, as well as a questionnaire to be filled in and returned after the
experiments.

3.3 WOZ Results on the Dialogue Model for P1

Each WOZ generation produces large amounts of quantitative data which are
used for measuring the extent to which quantitatively stated constraints are
being met. This section describes the dialogue model development process
focusing on the extent to which the mentioned (section 3.1) technological
constraints were satisfied. A second, equally important, use of (quantitative,
qualitative or structural) WOZ data during design is the use of data as evidence
of user problems with the simulated system. The user problem types which were
identified and addressed during P1 dialogue design have been described
elsewhere [2,4].

Initially the dialogue structure was a loosely ordered set of predefined phrases.
There were no constraints on which phrases could be used in which
circumstances. The choice was fully left to the wizard who had great problems
being consistent as a result. Subjects had as much of the dialogue initiative as
they wanted to but the technological constraints were not met. A more powerful
tool was needed to obtain a consistent and incremental dialogue model which
might eventually satisfy the technological constraints. A graph structure having
predefined phrases in the nodes and predicted contents of user input along the
edges was chosen for this purpose. The graph represented a more structured
dialogue in which it was well-defined which ordered pieces of information the
system needed from the user in order to make, e.g., a reservation. Domain
coverage was adjusted to make its limits increasingly well-defined and the
coverage itself more complete.

As P1 requires limited user utterance length, at most 100 active words at a
time and limited vocabulary, user dialogue initiative causes problems because of

the length and unpredictability of users’ utterances. To satisfy those constraints,
the dialogue had to be made increasingly system-directed. This was done by
converting user questions into system questions. Asking the questions allows the
system to have well-defined expectations concerning user utterances (answers)
in context.

As can be seen from figures 4 and 5, users’ average utterance length and the
average number of utterances exceeding ten tokens (words) decrease while more
and more of the dialogue initiative is left to the system which asks nearly all the
questions in the 7th generation (figure 6). Two other factors instrumental in
reducing user utterance length were: (a) an introductory admonition to users to
be brief when answering questions posed by the system, and (b) the fact that the
system addressed users tersely rather than politely [15].

Interestingly, system-directed dialogue seems quite acceptable and natural in
some tasks. Recordings of dialogues from a travel agency showed that once the
customer has expressed a goal and a few constraints, the travel agent typically
takes over and asks questions. This is particularly clear in the case of reservation
tasks whereas customers typically ask more questions when performing
information tasks. The difference between reservation and information tasks is
that reservation tasks require the exchange, in some sequential order, of well-
defined sets of information whereas information tasks have no such structure.

generation

0
2
4
6
8

10
12
14
16

1. 2. 3. 4. 5. 6. 7.

wizard subject

to
ke

ns
 p

er
 tu

rn

Figure 4: Average length of wizard and subject utterances in terms
of tokens per turn. In the 5th generation, more information was
included in the wizard's utterances, sparing users from having to ask
for it.

generation

tu
rn

s >
 1

0
to

ke
ns

0
1
2
3
4
5
6
7

1. 2. 3. 4. 5. 6. 7.

wizard subjects

Figure 5: Average number of turns per dialogue exceeding 10 tokens.

generation

pe
rc

en
ta

ge
 o

f q
ue

st
io

ns

0
20
40
60
80

100

1. 2. 3. 4. 5. 6. 7.

wizard subjects

Figure 6: Number of questions in per cent of total number of turns.
Field recordings also showed that the average number of words per

system/user exchange as well as per task were largely at the same level in the
7th WOZ generation as in similar human-human dialogues. This may be taken
to indicate that a natural level of information exchange had been reached.

A sub-language vocabulary of 500 words has been defined on the basis of the
6th and 7th generations of WOZ experiments. However, it is not clear whether
500 words are sufficient for enabling recognition of the vocabulary that is
natural to users in the task domain. The WOZ vocabularies did not clearly
converge, as indicated by the vocabulary from the 7th generation in figure 7.
Note that the figure only represents types other than numbers, days of the week,
months and destinations. Numbers, etc. are irrelevant to the issue of
convergence as a complete set of them has to be represented in the system
anyway.

ne
w

 ty
pe

s p
er

 n
ew

 to
ke

ns
 in

 %

tokens

0

5

10

15

20

25

0 500 1000 1500 2000

16
3

6

18

17

20

19

15

21

22
23

24

Figure 7: Cumulative type/token ratio for the subjects in the seventh
generation. The types counted do not include numbers, week-days,
months and destinations. Subjects' numbers are indicated in the data
points.

4. Dialogue Implementation

The dialogue model developed during the WOZ experiments has been
implemented as a dialogue description in DDL [8]. This section provides an
outline of the dialogue program structure.

The implementation of the dialogue description has the following two main
aspects:

1. Domain. The system is task oriented. Each task comprises a number of
pieces of information each of which must be established and checked for
bindings. For example, the task of determining a travel route requires in P1 two
pieces of information, namely the departure airport and the arrival airport. For
two such airports to define a route they must exist in the timetable.

2. Dialogue. This primarily concerns how the order of establishing
information (i.e., the order of individual tasks) is defined, who has the initiative,
and the built-in facilities for supporting task-independent dialogue with the user
such as the user commands Repeat and Correct.

The main flow of the implemented dialogue description is expressed by the
DDL procedures (graphical level) shown in the figures below.

a

b

Graph->? (figure 8a) determines which node to proceed to, i.e. which piece of
information to establish, and Info-node (figure 9) finds a value for that node. In
broad terms, the entire dialogue is carried out by repeatedly performing these
two main actions.

All information collected from the user as well as from the database during the
dialogue is represented in the dialogue state. The dialogue state is defined by
the following four elements to be explained below:

• a number of task objects each of which has slots indicating
- if the node is already being checked;
- the node status as regards user and system;
- a value;

Figure 8: The graphical DDL representation of Graph->? (a)
Graph->new (b).

• the current item (piece of information);
• the previous item; and
• the current graph;

The first three elements are established in Info-node and the last one in Graph-
>?. When a user calls the system the dialogue state contains an empty task
object, and the current and previous items are set to ZERO (cf. figure 8.b) which
is the root node.

The previous item acts as a degenerate dialogue history. A real dialogue
history would contain information on the dialogue from its beginning to the
present state, but in P1 only the previous item is being stored at any given time.
The current graph is initially set to Graph->new (figure 8.b). After initialisation,
the program repeatedly performs the two main actions: shift to a new node and
find a value for it.

Graph->? checks which graph is the current one. For instance, Graph->new
(figure 8.b) is the current graph in the initial part of any dialogue, and Graph-
>reserve becomes the current graph if and when the user decides to make a
reservation and until the reservation has actually been made. On the basis of the
current graph, Graph->? determines the next node to proceed to and calls Info-
node instantiated to this node.

Info-node controls the acquisition of information. It first checks if the current
item is already being checked and, if so, control is returned to Graph->?. The
purpose of this check is to avoid circularity in the dependency graph not shown
in figure 9 but underlying Info premises and Info depends. If, e.g., the current
item is the arrival airport and the previous item is the departure airport then the
information on the departure airport has caused the system to ask for the arrival
airport in order to check whether the route is a valid one. However, in this case
the information on the arrival airport should not cause the system to ask once
more for the departure airport.

If no circularity exists, Info-node checks the premises of the node and then its
status is considered. According to its status an action is performed. The node’s
user status expresses the dialogue description’s record of the user and what
information the user has provided or been given as regards the current item. The
node’s system status expresses the dialogue description’s record of what the
system has done as regards the current item. User status and system status may
each take one of the following values:

bottom the node has no value yet.
no the value is marked as incorrect.
check the value must be checked.
partial the value is only partially determined.
yes the value is determined and accepted.

In addition, the user status may take the value:
inform tell the user the value.

The (user, system) status pair determines the action to be taken by the system in
its next turn. Turn actions may be

NOA no action.
NEW ask the user for a new value.
CUS check the value with the user.

Figure 9: The graphical DDL representation of Info-node.

PUS ask the user, given a partially determined value.
ERR tell the user that there is an error.
IUS inform the user about a value.
CON check validity and consistency of a value

Suppose that the next information to be established is the hour of departure.
When Info-node is called, user status (U) as well as system status (S) have the
value bottom. In Info premises it is checked if the premises for hour (route and
date) have both U and S set to yes. If so, Info? is entered because of the two
bottom values for hour. The user is asked to indicate the hour of departure. Info
get awaits the user answer which could be: “In the morning.” In this case U is
set to partial and S to check. This status leads on to Info consistent which
checks the database and sets S to partial (U remains unchanged). In Info!? the
user is told which departures are possible in the morning in question and asked
if s/he wants one of them. Info get awaits the user answer which could be:
"Seven thirty." In this case U is set to inform and S is set to check. Since system
status has higher priority than user status checking will be done before
informing the user. In Info consistent S is set to yes because the departure
existed in the database. Then Info! is entered and the system informs the user
that 7:30 is the value it has accepted and U is then also set to yes. Now a value is
obtained which is supposed to be accepted by user as well as system and it is
checked whether the value of the node has been changed. This is not the case
since both U and S were set to bottom from the start which means that there was
no value. Control is now returned to Graph->?.

In cases where a value has been changed, e.g. if the day of departure has been
changed from Monday to Tuesday, it is also checked if the values of all the
nodes depending on the current one are still correct.

In addition to the described main flow of the program there are four
exceptions: Repeat, Correct, Not understood and two versions of Timeout.

When the user says Repeat, the program will just return to the choice of action
in Info-node and then execute it again.

A Correct event from the user will cause the current item to be set to the
previous item and then Info-node is executed again.

A Not understood event occurs when the system did not understand what the
user said. This fact is communicated to the user who is supposed to answer the
previous question again.

Timeout events may be prompting or non-prompting. A prompting Timeout
event occurs when the user does not say anything during a given time interval.
Then the user is asked again. If the user has not responded after a certain
number of prompting Timeouts, a non-prompting Timeout will occur and the
system will hang up.

5. Conclusion

Despite the unparalleled power of the WOZ prototyping method, WOZ does
have a number of theoretical and practical limitations preventing it from

delivering a system specification which is guaranteed to satisfy all design
constraints [3]. Ongoing testing of P1 will help answering questions which were
not fully resolved during the WOZ experiments. The main points are the
following:

- Since no clear convergence of vocabulary could be observed in the WOZ
data material it remains uncertain whether the defined and implemented 500
word vocabulary provides sufficient coverage of the task domain;

- sub-grammars and lexica have been defined and implemented for each node
in the dialogue in order to cover the WOZ material from the two last
generations. However, it remains uncertain whether no more than 100 active
words are needed at any time during dialogue;

- user and system misrecognitions and their repair are difficult to simulate to
any great quantitative detail with WOZ. In consequence, P1 may prove to be
less robust than desirable. Furthermore, it is an open question whether the
implemented task-independent support facilities Correct and Repeat are
sufficient to ensure robustness. Additional error-handling mechanisms may be
needed which exploit the power of error correction through dialogue with the
user;

- the WOZ method does not in itself ensure a dialogue theory which is
sufficiently formalised (for implementation) and abstract (for maintenance and
portability of the application).

The P1 evaluation results will be used for developing the planned second
prototype P2 which is intended to have improved naturalness, flexibility and
robustness. The dialogue history and user model which in P1 are rather
primitive will be augmented in P2. P2 should accept more complex user input
including longer utterances. Experiments with a larger perplexity will be
necessary and a new series of WOZ experiments will be performed to develop
an improved dialogue model and determine to what extent the present
sublanguage should be enlarged. DDL and the DDL-Tool will be extended to
meet the more advanced requirements of P2. A computer-supported WOZ
environment will be built in which revisions to the simulated dialogue structure
are concurrently being implemented in DDL. On the output side, increased
dialogue complexity will require the use of speech synthesis instead of pre-
recorded speech.

References

1. Bernsen, N.O. “The Structure of the Design Space”. In Byerley, P.F.,
Barnard, P.J. and May, J., (Eds.): Computers, Communication and
Usability. Design Issues, Research and Methods for Integrated Services.
Amsterdam, North-Holland, 221-244, 1993a.

2. Bernsen, N.O. “Types of User Problems in Design. A Study of Knowledge
Acquisition Using the Wizard of Oz”. Esprit Basic Research project

AMODEUS-2 Working Paper UM/WP 14. Included in Deliverable I.2,
June 1993b.

3. Bernsen, N.O., Dybkjær, H. and Dybkjær, L. “Wizard of Oz prototyping:
How and when?”. Submitted to CHI'94, 1993.

4. Bernsen, N.O., Dybkjær, L. and Dybkjær H. “Task-Oriented Spoken
Human-Computer Dialogue”. Report 6a, Spoken Language Dialogue
Systems, CPK Aalborg University, CCS Roskilde University, CST
University of Copenhagen. To appear early 1994.

5. Bækgaard, A., Roman, A. and Wetzel, P. “Advanced Dialogue Design -
DDL Tool and ICM”. Esprit project 2094 SUNSTAR, Deliverable IV.6-2,
August, 1992.

6. Copeland, C., Durand, J., Krauwer, S. and Maegaard, B. (Eds.) “The
Eurotra Formal Specifications”. Studies in Machine Translation and
Natural Language Processing, vol. 2, 1991.

7. Dybkjær, H., Bernsen, N.O. and Dybkjær, L. “Wizard of Oz and the
Trade-Off between Naturalness and Recogniser Constraints”. Proceedings
of EUROSPEECH ‘93, Berlin, September, 947-950, 1993.

8. Dybkjær, H. and Dybkjær, L. “Representation and Implementation of
Spoken Dialogues”. Report 6b, Spoken Language Dialogue Systems, CPK
Aalborg University, CCS Roskilde University, CST University of
Copenhagen. To appear early 1994.

9. Dybkjær, L. and Dybkjær, H. “Wizard of Oz Experiments in the
Development of a Dialogue Model for P1”. Report 3, Spoken Language
Dialogue Systems, STC Aalborg University, CCS Roskilde University,
CST University of Copenhagen. February 1993.

10. Fraser, N.M. and Gilbert, G.N. “Simulating Speech Systems”. Computer
Speech and Language 5, 81-99, 1991.

11. Larsen, L.B., Brøndsted, T., Dybkjær, H., Dybkjær, L. and Music, B.
“Overall Specification and Architecture of P1”. Report 2, Spoken
Language Dialogue Systems, STC Aalborg University, CCS Roskilde
University, CST University of Copenhagen, February 1993.

12. Larsen, L.B., Brøndsted, T., Dybkjær, H., Dybkjær, L., Music, B. and
Povlsen, C. “State-of-the-art of Spoken Language Systems - A Survey”.
Report 1, Spoken Language Dialogue Systems, STC Aalborg University,
CCS Roskilde University, CST University of Copenhagen, September
1992.

13. Lindberg, B., Kristiansen, J. and Andersen, B. “SUNCAR Functional
Description”. Esprit Project 2094 SUNSTAR, STC.WPIV.008, March
1992.

14. Povlsen, C. and Music, B. “Definition and Specification of the Sub-
language for P1”. Report 4, Spoken Language Dialogue Systems, CPK
Aalborg University, CCS Roskilde University, CST University of
Copenhagen. To appear early 1994.

15. Zoltan-Ford, E. “How to Get People to Say and Type what Computers can
Understand”. International Journal of Man-Machine Studies 34, 527-547
1991.

Acknowledgements

The work described in this paper was carried out under a grant from the Danish
Government’s Informatics Research Programme whose support is gratefully
acknowledged. Thanks are due to Tom Brøndsted, Anders Bækgaard, Paul
Dalsgaard, Lars Bo Larsen, Børge Lindberg, Brad Music and Claus Povlsen for
helpful comments.

